Arranged and produced by

Main Filter Inc.
Hydraulic Filter Manufacturers
Contents

Definition of Hydraulics
Introduction to Hydraulics
Designing a Simple Hydraulic Circuit
Principles of Hydraulics
Contamination
Sources of Contamination
The Effects of Contamination
The Costs of Contamination
Comparison of Filter Types and Locations
Filter Test Methods
Rating a Filter
Hydraulics is a branch of science and engineering concerned with the use of fluids to perform mechanical tasks. It is part of the more general discipline of fluid power.

The word "hydraulics" comes from the Greek word *hydraulikos* which means water organ which in turn means water and pipe.

Typically, the fluid used in a hydraulic system is an incompressible liquid such as a mineral based hydraulic oil. Pressure is applied by a piston to fluid in a cylinder, causing the fluid to press on another piston that delivers energy to a load. If the areas of the two pistons are different, then the force applied to the first piston will be different from the force exerted by the second piston.

This creates a mechanical advantage.

**Pascal’s Law**

A change in pressure at any point in an enclosed fluid at rest is transmitted undiminished to all points in the fluid.

This principle is stated mathematically as:

\[ \Delta P = \nu(\Delta h) \]
A hydraulic system is not a source of power.
The power source would be a prime mover such as an electric engine which drives the pump.

**Advantages of Hydraulics**

- **Variable Speed**: The actuator (A device for converting energy into mechanical energy i.e., a motor or cylinder.) in a hydraulic system can be driven at different speeds.

- **Reversible**: A hydraulic actuator can be reversed instantly while in full motion without damage.

- **Overload Protection**: The pressure relief valve in a hydraulic system protects the system from overload damage.

- **Small Components**: Hydraulic components, because of their high speed and pressure capabilities, can provide high power output with very small weight and size.

- **Can Be Stalled**: A hydraulic actuator can be stalled without damage when overloaded, and will start up immediately when the load is reduced.

- **Hydraulic Oil**: The oil transmits power readily since it is minimally compressible. The most desirable property of the oil is its lubricating ability.
Basic hydraulic system with a linear hydraulic actuator.

A Reservoir  
B Electric Motor  
C Pump  
D Maximum Pressure Relief Valve  
E Directional Valve  
F Flow Control Valve  
G Right-angle Check Valve  
H Cylinder
1. All circuit design must start with the job you want to achieve. For example; a weight to be lifted, a tool head to be rotated, or piece of work that must be clamped.

2. If the requirement were simply to raise a load, placing a hydraulic cylinder under it would do the job. The stroke length of the cylinder would have to be at least equal to the distance the load must be moved.

3. The cylinder's area would be determined by the force required to raise the load and the desired operating pressure. For example; if an 8000 lb weight is to be raised a distance of 30 inches and the maximum operating pressure must be limited to 1000 psi then the cylinder selected would require a stroke length of at least 30 inches and with an 8 in 2 area piston it would provide a maximum force of 8000 lbs. However this, would not provide any margin for error.
To raise an 8000 lb load 30 inches, a cylinder with at least a 30 inch stroke is required.
The better selection would be a 10 in 2 cylinder permitting the load to be raised at 800 psi and providing the capability of lifting up to 10,000 lbs.

The upward and downward travel of the piston rod would be controlled by a directional valve. The rate at which the load must travel will determine the pump size. The 10 in 2 piston will displace 10 in 3 for every inch it lifts. Extending the piston rod 30 inches will require 300 in 3 of fluid. If it is to move at a rate of 10 inches per second, it will require 100 in 3 of fluid per second or 6000 in 3 per minute. Since pumps are usually rated in gallons per minute, the following conversion is necessary:

\[
\frac{6000}{231} = 26 \text{ gpm}
\]
The minimum pressure required to lift the load equals the load divided by the piston area. In this case 10 square inches.

\[
\frac{8000 \text{ lbs}}{10 \text{ sq in}} = 800 \text{ psi}
\]

Therefore 800 psi minimum is needed to lift our load of 8000 lbs.
The horsepower (hp) needed to drive the pump is a function of its delivery and the maximum pressure at which it may operate. The following formula example will determine the size of the motor required:

\[
\text{hp} = \text{gpm} \times \text{psi} \times 0.0007 \\
\text{hp} = 26 \times 1000 \times 0.0007 \\
\text{hp} = 18.2
\]

To prevent overloading of the motor and to protect the pump and other components from excessive pressure due to overloads or stalling, a relief valve should be set to limit the maximum system pressure and installed in the line between the pump outlet and the pump inlet port to the directional valve (as shown in the adjacent diagram).

A reservoir sized to hold approximately two to three times the pump capacity in gallons per minute, filters, and adequate piping would complete the system.
Electric Motor

Relief Valve

Pump delivery is directed to the cap end of the cylinder.

The relief valve protects the system from over pressure by diverting the pump flow to tank when the maximum pressure setting is reached.

Piston Rod Extends

Exhaust oil is pushed out of the rod end and back to the tank.

Directional Valve

Flow indicated by switch position.

Electric Motor

Pump
Pressure results whenever there is resistance to fluid flow or to a force which attempts to make the fluid flow. The tendency to cause flow (or the push) may be supplied by a mechanical pump or may be caused simply by the weight of the fluid.

It is well known that pressure increases with depth in a body of water. The pressure is always equal at any particular depth due to the weight of the water above it. An Italian scientist named Torricelli proved that if a hole is made in the bottom of a tank of water, the water runs out faster when the tank is full and the flow rate decreases as the water level lowers. In other words, as the “head” of water above the opening lessens, so does the pressure.

Torricelli expressed that the pressure at the bottom of the tank only as “feet of head”, or the height in feet of the column of water. Today, with the pound per square inch (psi) as a unit pressure, we can express pressure anywhere in any liquid in more convenient terms.

All that is required is knowing how much a cubic foot of the fluid weighs.
Then the total weight is 624 lbs. This weight is divided over 144 square inches. This gives us a pressure of 4.33 psi at the bottom of the 10 foot column of water.
Principles of Hydraulics

Principles of Flow

Flow is the action in the hydraulic system that gives the actuator its motion. Pressure gives the actuator its force, but flow is essential to cause movement. Flow in the hydraulic system is created by the pump.

How Flow is Measured

There are two ways to measure the flow of a fluid:

- Velocity is the average speed of the fluid's particles past a given point or the average distance the particles travel per unit of time. It is usually measured in feet per second (fps), feet per minute (fpm), or inches per second (ips).

- Flow rate is a measure of the volume of fluid passing a point in a given time. Large volumes are measured in gallons per minute (gpm). Small volumes may be expressed in cubic inches per minute.

Bellow illustrates the distinction between velocity and flow rate. A constant flow of one gallon per minute either increases or decreases in velocity when the cross section of the pipe changes size..
Flow Rate and Speed

The speed of a hydraulic actuator, always depends on the actuator’s size and the rate of flow into it. Since the size of the actuator will generally be expressed in cubic inches, use this conversion factor:

\[
gpm = \frac{\text{in}^3}{\text{minute}}
\]

Flow Rate and Pressure Drop

Whenever a liquid is flowing, there must be a condition of unbalanced force to cause motion. Therefore, when a fluid flows through a constant diameter pipe, the pressure will always be slightly lower downstream with reference to any point upstream. This difference in pressure, or pressure drop, is required to overcome friction in the line.

Fluid Seeks a Level

Conversely, when there is no pressure difference on a liquid, it simply seeks a level. If the pressure changes at one point the liquid levels at the other points only rise until their weight is sufficient to make up the difference in pressure. The difference in height (head) in the case of oil is one foot per 0.4 psi. Thus it can be seen that additional pressure difference will be required to cause a liquid to flow up a pipe or to lift the fluid since the force (due to the weight of the liquid) must be overcome. In circuit design, naturally, the pressure required to move the oil mass and to overcome friction must be added to the pressure needed to move the load. In most applications, good design minimizes these pressure “drops” to the point where they become almost negligible.
There is a consensus that 70% to 90% of equipment wear and failure is attributed to contamination. Solid particles, such as dirt, are the chief culprits because of their ability to directly attack metal surfaces. The selection of a High quality filter is a cost effective way of reducing this contaminate. All hydraulic fluids contain dirt to some degree. Dirt in hydraulic fluid is the downfall of even the best designed hydraulic systems. Dirt particles can bring huge and expensive machinery to its knees.

Dirt vs Hydraulic Fluid

Dirt causes trouble in a hydraulic system because it interferes with the fluid which has four functions:

1. To act as a medium for energy transmission
2. To lubricate internal moving parts of hydraulic components
3. To act as a heat transfer medium
4. To seal clearances between close fitting moving parts

Dirt interferes with the transmission of energy by plugging small orifices in hydraulic components like pressure valves and flow control valves. In this condition pressure has a difficult time passing to the other side of the spool. The valve’s action is not only unpredictable and nonproductive, but unsafe. Because of viscosity, friction, and changing direction, hydraulic fluid generates heat during system operation. When the fluid returns to the reservoir, it gives the heat up to the reservoir walls. Dirt particles interfere with liquid cooling by forming a sludge which makes heat transfer to reservoir walls difficult.
Clean hydraulic systems run cooler than dirty systems. Probably the greatest problem with dirt in a hydraulic system is that it interferes with lubrication.

Dirt can be divided into three sizes with respect to a particular component’s clearances; that is, dirt which is smaller than a clearance, dirt which is the same size, and dirt which is larger than a clearance.

Extremely fine dirt, which is smaller than a component’s clearances, can collect in clearances especially if there are excessive amounts and the valve is not operated frequently. This blocks or obstructs lubricative flow through the passage. An accumulation of extremely fine dirt particles in a hydraulic system is known as silting.

Dirt which is about the same size as a clearance rubs against moving parts breaking down a fluid’s lubricative film. Large dirt can also interfere with lubrication by collecting at the entrance and blocking fluid flow between moving parts.

A lack of lubrication causes excessive wear, slow response, erratic operation, solenoid burn out, and early component failure.

**Dirt is Pollution**

Dirt in a hydraulic system is pollution. It is very similar to bottles, cans, paper and old tires floating in your favorite river or stream. The difference is that hydraulic system pollution is measured using a very small scale. The micrometer scale is used to measure dirt in hydraulic systems.
Sources of Contamination

When engineering a complex hydraulic system, designers must consider the ways in which contaminants reach the fluid, as well as the quantity and size of the particles. Those factors influence the size, micron rating, and location of filters.

Built-In or From Maintenance

During manufacturing or maintenance, large quantities of particles and solid debris are introduced. Even the most thorough flushing doesn’t eliminate all foreign matter, some of which dislodges once the system is put into operation. Also, there is no guarantee that all of the right procedures will be followed, so, as equipment can sustain significant wear in the first few days after start-up, high quality filtration is essential at this stage.

Tank Leakage

Loose inspection plates and other unsealed joints in a tank allow a great deal of dirt into the fluid, particularly when surrounding air is polluted.

Air Through Breather

Most hydraulic systems draw in and expel air as the oil level in the reservoir changes. Often, this is a main source of dirt ingestion, especially when filter breathers either are not installed or maintained.

Dirty Oil

New oil is seldom as clean as required for a modern hydraulic system, even when it is described as “clean” by the supplier. When stored improperly or not well filtered before filling the reservoir, it likely will be many times as contaminated as the system can tolerate.
Pumps, especially when worn, are a key source of metal wear particles. Hard wear metals are of great concern for several reasons:

1. Potential for damage to valves, cylinders and motors immediately downstream.
2. Ability to generate large numbers of additional particles within the system.
3. Action as a catalyst in the fluid oxidation process.

Older pipes can flake off quantities of larger particles, such as scale, rust and welding slag.

When sliding back and forth, cylinder rods can draw in large quantities of smaller particles, depending on the concentration of airborne dirt and quality of the rod seals. This is a particular problem in systems with numerous large cylinders.

The first line of defense against contamination is to exclude particles and moisture to the maximum extent possible. This effort entails a host of actions, such as careful manufacturing and maintenance, thorough flushing, sealed reservoirs and pipe joints, tight seals, and so forth.

Whatever the success in exclusion, though, top quality filters are necessary. Even if it were possible to keep out most contaminants, particle counts would grow rapidly in the fluid for this reason:

*Any particles thrown off the pump or from other components will generate additional particles at a rapid rate.*
Effects of Contamination

Abrasive Wear

Anytime two metal surfaces move opposite to one another, they are subject to abrasive wear.

The amount of metal loss depends on the types of metals, quality of the lubricant, speed, tolerances, and other factors.

Abrasion results when hard particles about the width of the tolerance become embedded in one of the oppositely moving surfaces, then act like a cutting tool to gouge and scratch the other surface.

Equipment designed with close tolerances to handle high pressure and speed is particularly subject to abrasion from particles well below 10 microns in size.

Moreover, only a small loss of metal will reduce equipment performance and shorten its life.

Abrasion is the leading cause of wear. Embedded hard particles scratch and gouge and most seriously affects close-tolerance, high speed and high pressure components such as pumps and motors.
**Erosive Wear**

Erosion takes place when particles moving at high speed hit surfaces and pit or wear away the metal.

Control devices, such as flow controls and relief valves, are especially sensitive to this type of damage.

**Silting**

Spool valves, especially proportional and servo types, can lose responsiveness or bind completely because of silt buildup. Silt is composed of extremely fine particles, often under five microns in size, which are present in the environment; or which are generated within the system in large quantity. Such valves are also affected by abrasion, and, in some cases, particle blockage that leads to total failure.

Servo and proportional valves are subject to the following problems:
- close tolerances
- low operating forces
- requirement for accuracy

Silt build-up causes can also include; stiction, binding and poor response.
Fatigue Wear

Bearings and other components subject to heavy axial loading often suffer from metal fatigue.

Hard particles caught between two surfaces create cracks which continually expand and eventually, result in spalling.

The useful life of critical bearings can be prevented simply by improving cleanliness of the oil.

Analyses by bearing manufacturers and others have shown that the useful life of critical bearings can be greatly lengthened by means of improved dirt exclusion techniques and better filtration.

Costs of Contamination

When contaminants wear or destroy critical components, the result is an increase in several kinds of costs. It may be impractical to pinpoint the sum of such costs precisely, but not difficult to establish the general magnitude of the problem.

In a continuous process (Steel, aluminum, paper, etc.), an emergency shutdown may cost well in excess of $50,000 an hour. Repair work is often difficult and time-consuming, stretching maintenance resources.

Electrical energy is a key cost factor, therefore any loss of efficiency due to component wear and damage contributes to cost.
Components employed in systems that function at high speed and under heavy load carry replacement cost that is related to their size, precision and sensitivity to contamination. Fluid replacement cost varies widely.

In general, the higher the quality and more specialized the fluid, the higher the cost.

Bearing and gear wear diminishes the accuracy of equipment by causing chattering and vibration. In some circumstances, product quality is reduced (and scrap increased). The end result is a lower quality product and lost income.

In all cases, an investment in quality filtration pays for itself very quickly. This is especially true when equipment must provide top performance for an extended period of time.

<table>
<thead>
<tr>
<th>Operating Costs</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downtime</td>
<td>Intermittent Operation</td>
<td>Critical Continuous Process</td>
</tr>
<tr>
<td>Repair</td>
<td>Simple and Quick</td>
<td>Difficult and Time Consuming</td>
</tr>
<tr>
<td>Energy</td>
<td>Light Load</td>
<td>Heavy Load</td>
</tr>
<tr>
<td><strong>Replacement Costs</strong></td>
<td><strong>Low</strong></td>
<td><strong>High</strong></td>
</tr>
<tr>
<td>Components</td>
<td>Small and Dirt-tolerant</td>
<td>Large, Precision and Sensitive</td>
</tr>
<tr>
<td>Fluid</td>
<td>Standard</td>
<td>High quality special</td>
</tr>
<tr>
<td><strong>Lost Business Costs</strong></td>
<td><strong>Low</strong></td>
<td><strong>High</strong></td>
</tr>
<tr>
<td>Production Quality</td>
<td>Unaffected by process</td>
<td>Affected by process</td>
</tr>
</tbody>
</table>
Comparison of Filter Types and Locations

A Suction Strainer is located in the inlet of the pump. The strainer removes contamination from the reservoir fluid before it reaches the pump and the system components. These filters should be set up with an internal bypass valve to prevent starving the pump.

**Advantages**
- Last chance protection for pump

**Disadvantages**
- Must use relatively course media and/or large housing size, to keep pressure drop low due to pump inlet conditions
- Cost is moderate
- Does not protect downstream components from pump wear

A Pressure Filter is located downstream of the pump. It is exposed to full system pressure. The filter removes contamination generated or passed by the pump. A particularly contamination sensitive component may be protected by a “point of use filter” located immediately upstream of it.

**Advantages**
- Specific component protection
- Contributes to overall system cleanliness
- Catches wear debris from pump

**Disadvantages**
- Housing is relatively expensive because it must handle full system pressure
- Does not catch wear debris from downstream working components
A Return Line Filter is located downstream of the pump and system components and upstream of the system reservoir. The return filter removes contamination generated or ingested by the pump and components, before the fluid returns to the reservoir.

**Advantages**
- Catches wear debris from components before it enters the reservoir
- Lower pressure ratings result in lower cost
- May be in-line or in-tank for easier installations

**Disadvantages**
- No protection from pump generated contamination
- Return line flow surges may reduce filter performance
- No direct component protection

An Off-Line Filter is located in a separate loop connected to the reservoir and has its own source of power. The Off-Line Filter operates independently of the main hydraulic system cleaning the fluid in the reservoir only.
Filter Test Methods

**Bubble Point Test**

The bubble point test is the differential gas pressure at which the first steady stream of gas bubbles is emitted from a wet filter element under specified conditions. The air pressure required to blow the first stream through a pore is inversely proportional to the size of the largest pore in the element.

**Dirt Capacity Test**

The dirt capacity test determines the weight of a specified artificial contaminant which must be added to the influent to produce a given differential pressure across a filter at a specified condition. It is used as an indication of relative service life.

**Multi-pass Test**

The multi-pass test is used to determine the Beta Ratio/micron rating and dirt holding capacity of a filter element and is a destructive test.

**Patch Test**

Visual analysis of a fluid sample. Passing a fluid through a fine media patch. The patch is then analyzed under a microscope.

**Crackle Test**

A Crackle test is run to determine if an oil sample is contaminated with water.

**Portable Particle Counter**

A test that takes less than a minute. It generally gives a particle count and cleanliness classification.
Laboratory Analysis

Gives a complete look at a fluid sample. Typical offerings include viscosity, neutralization number, water content, particle count, spectrometric analysis, trending graphs, photomicrograph and recommendation.

Dirt Holding Capacity

The ability of an element to retain dirt or contaminant is referred to as its “Dirt Holding Capacity”. It determines the life of the element and the length of service it will perform before it becomes clogged to the point it must be replaced.

Contaminant Loading

As an element loads with contamination, the differential pressure will increase over time; slowly at first and then very quickly as the element nears it’s maximum life.

Pressure Drop

A difference in system pressure between the upstream and downstream sides of the filter. Four Major Factors Contribute to Pressure Drop:
• Filter Media
• Dirt Contamination
• Flows (higher flows create higher pressure drop)
• Fluid Viscosity (higher fluid viscosity’s mean higher pressure drop)

Viscosity

Viscosity is the measure of a fluid’s resistance to flow. Fluids that have a high resistance to flow have a high viscosity. Fluids that have a low resistance of flow, have a low viscosity. Fluid viscosity changes with variations in fluid temperatures.
Rating a Filter

A filter element is typically given a Nominal or Absolute rating by the filter manufacturer. This rating is determined by running a number of tests to determine the filters Beta and Efficiency Ratings.

Nominal Rating

An arbitrary micrometer value indicated by the filter manufacturer. Due to the lack of reproductivity, this rating is deprecated.

Absolute Rating

The diameter of the largest hard spherical particle that will pass through a filter under specified test conditions. It is an indication of the largest opening in the filter element.

Beta Ratios/Efficiencies

Beta Ratio can be expressed as $B_x = \frac{\text{number of particles upstream}}{\text{number of particles downstream}}$ where “$x$” is equal to the micron size

example: $B_{10} = \frac{50,000}{10,000} = 5$

<table>
<thead>
<tr>
<th>Beta Ratio</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td>50.00%</td>
</tr>
<tr>
<td>5</td>
<td>80.00%</td>
</tr>
<tr>
<td>10</td>
<td>90.00%</td>
</tr>
<tr>
<td>20</td>
<td>95.00%</td>
</tr>
<tr>
<td>75</td>
<td>98.70%</td>
</tr>
<tr>
<td>100</td>
<td>99.00%</td>
</tr>
<tr>
<td>200</td>
<td>99.50%</td>
</tr>
<tr>
<td>1,000</td>
<td>99.90%</td>
</tr>
</tbody>
</table>